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Analysis of iterative methods for the viscous/inviscid
coupled problem via a spectral element approximation
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SUMMARY

Based on a new global variational formulation, a spectral element approximation of the incompressible
Navier–Stokes/Euler coupled problem gives rise to a global discrete saddle problem. The classical Uzawa
algorithm decouples the original saddle problem into two positive definite symmetric systems. Iterative
solutions of such systems are feasible and attractive for large problems. It is shown that, provided an
appropriate pre-conditioner is chosen for the pressure system, the nested conjugate gradient methods can
be applied to obtain rapid convergence rates. Detailed numerical examples are given to prove the quality
of the pre-conditioner. Thanks to the rapid iterative convergence, the global Uzawa algorithm takes
advantage of this as compared with the classical iteration by sub-domain procedures. Furthermore, a
generalization of the pre-conditioned iterative algorithm to flow simulation is carried out. Comparisons
of computational complexity between the Navier–Stokes/Euler coupled solution and the full Navier–
Stokes solution are made. It is shown that the gain obtained by using the Navier–Stokes/Euler coupled
solution is generally considerable. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: global Uzawa algorithm; Navier–Stokes/Euler coupled equations; pre-conditioned conju-
gate gradient method; spectral element approximation

1. INTRODUCTION

Domain decomposition methods are useful approximation techniques to deal with computa-
tional fluid dynamics (CFD) problems, especially in complex physical domains and when using
parallel computational environments. They were first employed in finite difference and finite
element methods. In the context of spectral methods, they date from the late 1970s (see for
instance Reference [1] and the references therein). Earlier applications of the domain decompo-
sition methods are related to splitting the whole domain into sub-domains of simpler shape,
and then reducing the given problem to a sequence of sub-problems, which include generally
the same equations. Recently, a lot of attention has been focused on the possibility of using
different types of equations within sub-domains where different flow characters are observable.
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There has been some work on the coupling of compressible viscous and inviscid equations
[2–4]. The coupled problem of incompressible viscous and inviscid equations has been
considered by Dinh et al. [5] and Xu et al. [6–8]. One of main goals of these investigations had
been to find the correct conditions on the interface separating the viscous and inviscid
sub-domain. However, efficient solvers are also of great importance when solving numerically
the full time-dependent coupled equations. Before the work of Xu and Maday [8], numerical
algorithms used to solve the resulting discrete coupled equations were always ‘iteration by
sub-domain resolution’—known as the alternating Schwarz method [3,9,32]. An effective
iteration by sub-domain procedure, however, requires exact convergence analysis and a certain
number of repeat resolutions to reach convergence, which is often theoretically non-trivial and
numerically costly.

In Reference [8], a new coupling strategy for the incompressible viscous/inviscid coupled
equations was introduced. This strategy consists of writing the viscous/inviscid coupled
equations into a global variational formulation. Thanks to this new weak formulation, the
original coupled equations are written under a global saddle problem, similar to the one
resulting from the full Stokes equations. Therefore, standard techniques developed for the
Stokes problem can be applied (after some modifications) to solve the viscous/inviscid coupled
equations.

To understand what approaches can be used to solve discrete systems based on the global
saddle problem of the Navier–Stokes/Euler coupled equations, numerous approaches that
have been proposed for solving the algebraic system stemming from discretization of the
Stokes equations are recalled. One approach is to solve the nodal pressure and velocity
unknowns directly in coupled form [10,11]. A second approach is to replace the continuity
equations with a Poisson equation for the pressure [12–15]. A third approach is to apply block
Gaussian elimination and back-substitution for the pressure and the velocity yielding two
positive definite symmetric systems (see, for example, Reference [16] and the references
therein). The first approach is general and robust; however, it can be memory intensive for
large problems, in particular those with high-order approximation. The second approach
decouples the momentum and continuity except on the domain boundary; however, it may
require a rediscretization of the continuous problem, and boundary conditions must be
supplied for the pressure.

The third approach mentioned above is chosen, in this paper, to solve the discrete system
resulting from the discretization of the unsteady Navier–Stokes/Euler coupled equations for
the following reasons: first, between numerous algorithms, the Uzawa decoupling procedure
has been proven to be more attractive in terms of computational complexity and memory
requirement than a direct algorithm [16]; second, the block diagonal structure in the velocity
system allows us to inverse the velocity matrix easily, and therefore reduce the cost in each
iteration for the pressure calculation; third, the Uzawa decoupling procedure has been
successfully applied to the pure Navier–Stokes solution, choosing the same algorithm to solve
the discrete Navier–Stockes/Euler coupled equations enables us to compare the CPU costs
with the pure Navier–Stokes solution in an easier way.

In Reference [8] a conjugate gradient iterative algorithm has been applied to solve both the
pressure algebraic system and the velocity algebraic system. However, numerical experiments
showed that the direct gradient algorithm applied to the pressure algebraic system converges
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slowly and too many iterations are required to obtain sufficient accuracy. The present work
follows the subject of Reference [8], and considers furthermore a preconditioning method to
accelerate the rate of convergence. We give detailed analysis of the preconditioned Uzawa
algorithm, with special emphasis on solving the algebraic equations resulting from spectral
element approximation of the Navier–Stokes/Euler coupled equations. Numerical results show
that appropriate pre-conditioner applied to the pressure system can significantly recover the
rapid convergence rate, as done by similar pre-conditioiners applied to a pure Navier–Stokes
pressure system.

The outline of this paper is as follow: in Section 2 the basic Navier–Stokes/Euler coupled
equations and the global variational formulation are recalled. Section 3 proposes a spectral
element approximation based on the global variational formulation. Section 4 reviews the
Uzawa method for the unsteady Stokes problem, and then shows how the Uzawa algorithm
can be extended to the unsteady viscous/inviscid coupled problem. In Section 5, numerical tests
and comparisons with the full Stokes solution show the quality of the pre-conditioner
proposed. In Section 6, the viscous/inviscid coupled problem is extended to the unsteady
Navier–Stokes/Euler coupled problem. Flow simulations are carried out to prove the gain of
the new coupling strategy. The computational complexity will be discussed in Section 7.
Finally, Section 8 concludes the paper.

1.1. Notation

We assume V be a bounded, connected, open subset of Rd (d=2 or 3), with boundary (V; V−

and V+ are two open sub-sets of V, with V−SV+ =¥, V( −@V( + =V( . Gk=(VS(Vk,
k= − , + ; G=(V−S(V+.

In the following, we use letters of boldface type to denote vectors and vector functions. All
the quantities defined in Vk (k= − , + ) are identified by a superscript k. For example, if 8

is a function defined in V then the restriction of 8 in Vk is denoted by 8k. Let n be the outward
unit normal on (V to V, and n−, n+ be the outward unit normals on G to V−, V+

respectively (see Figure 1). For all m]0, we denote by Hm(V) the classical Sobolev spaces,
provided with the usual norm  ·m,V, and also with the semi-norm � · �m,V. We consider also the
space L�(V) with the norm  ·L�V. For any integer N, we denote PN(V) to be the set of all
polynomials of degree 5N in V. c0, c, c1, . . . are generic positive constants independent of

Figure 1. Model of two-dimensional domain.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 619–646



C. XU AND Y. LIN622

discretization parameters N and Dt, but dependent possibly on the exact solutions of the
equations under considerations. We will need the space L0

2(V), the space of all functions, which
are square integrable over V with zero average.

2. VISCOUS/INVISCID COUPLED PROBLEM

We consider the following viscous/inviscid coupled problem: for f given in L2(V)d, find a
velocity u and a pressure p, such that

Á
Ã
Í
Ã
Ä

au− −nDu− +9p− = f+, 9 ·u− =0 in V−

au+ +9p+ = f+, 9 ·u+ =0 in V−

u− =0 on G−

u+ ·n=0 on G−

(1)

where a and n are positive constants. The coupled problem (1) is of interest not only in its own
right, but also in that it constitutes the principal part in solving the full Navier–Stokes/Euler
coupled equations. In this respect, a can be viewed as the inverse of the time step, n is the
viscosity, f is an augmented force, which includes the explicitly treated convective term.

Obviously, appropriate conditions on the interface G separating the two sub-domains V−,
V+ are required. We have shown in our previous papers (see Reference [8]) that the solutions
(u−, p−) on the viscous domain V− and (u+, p+) on the inviscid domain V+ are related
through the equations

Á
Ã
Í
Ã
Ä

n
(u−

(n− −p− ·n− =p+ ·n+ on G

−u− ·n− = −u+ ·n+ on G
(2)

The well-posedness of the Equations (1) and (2) can be proven either by an artificial 6iscosity
method or by a globally variational method. From the practical point of view, the latter is of
particular interest. This fact will be demonstrated at the end of this paper. We review briefly
the basic idea. The equivalent variational formulation of (1) and (2) is:
Find (u, p) in X×M such that for all v in X, all q in M,

a(u, v)+n(9u−, 9v−)− − (p−, 9 ·v−)− + (9p+, v+)+ − (p+ ·n+, v−)G= (f, v),

(9 ·u−, q−)− − (u+, 9q+)+ − (u− ·n+, q+)G=0 (3)

where ( · , ·)k, k= − , + , ( · , ·)G, are defined respectively by

(F, C)k=
&

Vk

FC, (F, C)= (F, C)− + (F, C)+, (F, C)G=
&

G
FC
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The spaces for u and p such that (3) be well posed are

X={v�V− �H1(V−)d, v�V+ �L2(V+)d, v�G− =0}

M={q �V− �L2(V−), q �V+ �H1(V+)}SL0
2(V) (4)

provided with the norms

vX=v−1,V− +v+0,V+, qM=q−0,V− +q+1,V+

The equivalence between Equations (1)–(2) and (3) can be seen as follow. From Equations (1)
and (2), Equation (3) can be deduced readily; reciprocally, for all v− �H1(V−)d, v− �G− =0 and
all q− �L0

2(V−), let in Equation (3)

v=
!v− V−

0 V+, q=
!q− V−

0 V+

we have

a(u−, v−)− +n(9u−, 9v−)− − (p−, 9 ·v−)− = (p+ ·n+, v−)G+ (f−, v−)−,

(9 ·u−, q−)− =0

which give the viscous equations and the first of interface conditions (2) in the sense of
H−1/2(G).

In another part, for all v+ �L2(V+)d, and all q+ �H1(V+)SL0
2(V+), let in Equation (3)

v=
!0 V−

v+ V+, q=
!0 V−

q+ V+

then we obtain

a(u+, v+)+ + (9p+, v+)+ = (f+, v+)+

− (u+, 9q+)+ = (u− ·n−, q+)G

which give the inviscid equations and the second of interface conditions (2) in the sense of
H−1/2(G).

To prove the well-posedness of the variational problem (3), we write Equation (3) into the
following equivalent saddle-point problem:
Find (u, p) in (X×M) such that
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!a(u, v)+b(v, p)= (f, v) Öv�X
b(u, q)=0 Öq�M

(5)

where the bilinear form a and b are defined by

a(u, v)=a(u, v)+n(9u, 9v)− Öu, v�X

b(v, q)= − (q, 9 ·v)− + (9q, v)+ − (q+ ·n+, v−)G Öv�X, q�M

Note that the form a is continuous and coercive in X×X, while the form b is continuous and
satisfies the Babuska–Brezzi’s Inf–Sup condition in X×M (see Reference [8] for the detailed
proof). The well-posedness of problem (5) can be proven by applying the standard saddle-point
theory (see e.g. References [17,18]).

3. SPECTRAL DISCRETIZATION

A classical method of solving coupled problems consists of exhibiting its solution as a limit of
solutions of two sub-problems within V− and V+. This is achieved by considering the
following iterative procedure:
First, one of the two sub-problems, in V− for instance,

Á
Ã
Í
Ã
Ä

au−nDu+9p= f, 9 ·u=0 in V−

u=0 on G−

n
(u
(n− −p+ ·n− =p+ ·n+ on G

is solved with a Neumann condition p+ ·n+ arbitrarily; then knowing u− on G, we solve the
other sub-problem,

Á
Ã
Í
Ã
Ä

au+9p= f, 9 ·u=0 in V+

u·n+ =0 on G+

u·n+ =u− ·n+ on G

which gives p+; and so on. The iterative procedure continues until the convergence is reached.
The effectiveness of this strategy depends on the existence of convergence results of the
iterative procedure (generally a relaxation parameter is needed to accelerate the convergence).
It requires a certain number of repeat resolutions to reach convergence, which could be
expensive if the convergence rate is slow. We relegate these subjects to other papers (see
Reference [19]).

However, we choose the strategy called ‘global resolution’. We are going to see that this
strategy is very attractive in terms of computational complexity thanks to an effective
pre-conditioned conjugate gradient iteration based on an Uzawa decoupled procedure.
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We begin by introducing some basic notations. For a matter of simplification, consider a
rectangular domain V, which is split into two rectangular sub-domains V− and V+. Let
( · , ·)GL, ( · , ·)G to be evaluations of the continuous inner product ( · , ·) by Gauss–Lobatto
(GL) and Gauss (G) quadrature respectively. The following well-known identity and inequality
[20] will be used:

(8, 1)G
k = (8, 1)GL

k =
&

Vk

8 dx, Ö8�P2N−1(Vk), k= − , + (6)

&
Vk

82 dx5 (8, 8)GL
k 5c

&
Vk

82 dx, Ö8�PN(Vk), k= − , + (7)

We introduce two discrete spaces

XN=XS (PN(V−)×PN(V+)), MN=MS (PN−2(V−)×PN(V+))

endowed with the norms of X and M respectively.
We now consider a spectral approximation to the viscous/inviscid coupled problem based on

the variational form (3):
Find (uN, pN)�XN×MN such that

!aN(uN, vN)+bN(vN, pN)= (f, vN)GL ÖvN�XN

bN(uN, qN)=0 ÖqN�MN

(8)

where aN and bN are two bilinear forms, defined by

aN(uN, vN)=a(uN, vN)GL+n(9uN
−,9vN

−)GL
− , ÖuN, vN�XN

bN(vN, qN)= − (qN
−, 9 ·vN

−)G
− + (9qN

+, vN
+)GL

+ + (qN
+, vN

− ·n−)GL
G , ÖvN�XN, qN�MN

Theorem 3.1
The discrete problem (8) is well posed.

Proof
The theorem is proved by applying the standard saddle-point theorem. It consists on verifying
the following properties:

� The coercivity and the continuity of the mapping (uN, vN)�aN(uN, vN) in XN×XN, which
are trivial according to the inequality (7).

� The form bN is continuous. In fact, for all vN�XN, qN�MN,

bN(vN, qN)5qN
−0,V−�vN

− �1,V− +c �qN
+ �1,V+vN

+0,V+ +cqN
+0,GvN

− ·n−0,G

5gqNMvN
−X
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where g is a constant depending on the continuous trace mapping constant from H1(V−)
or H1(V+) to H1/2(G).

� The Inf–Sup condition of bN in XN×MN, which is demonstrated in the following
lemma. 

Lemma 3.1
Assume bN

− be a positive constant such that

inf
qN

− �L 0
2(V−)SPN−2(V−)

sup
vN
− �H 0

1(V−)dSPN(V−)d

− (qN
−, 9 ·vN

−)G
−

vN
−1,V−qN

−0,V−

]bN
−

then there exists a constant bN=cbN
−/(1+bN

−), such that

inf
qN�MN

sup
vN�XN

bN(vN, qN)
vNXqNM

]bN (9)

Proof
Let q�MN, we have q− �PN−2(V−). Decompose q− by

q− =q0
− + q̃− (10)

such that q0
− �L0

2(V−)SPN−2(V−) and q̃− is constant in V−. It is known that for such q0
−,

there exists a function v0
− �H0

1(V−)dSPN(V−)d such that

9 ·v0
− = −q0

− and v0
−1,V−5

1
bN

− q0
−0,V− (11)

We fix a function v%�XN which satisfies 	G v% ·n− =1 and let w0 be a function of
H0

1(V−)dSPN(V−)d, such that

&
V−

(9 ·w0)q=
&

V−

(9 ·v%)q, Öq�L0
2(V−)SPN−2(V−) (12)

If we define ṽ− =v%−w0, then the function ṽ− satisfies

&
V−

(9 · ṽ−)q=0, Öq�L0
2(V−)SPN−2(V−),

&
G

ṽ- ·n− =1 (13)

Taking v− =v0
− − q̃− ṽ−, we obtain by using Equations (10), (11) and (13)

− (q−, 9 ·v−)G
− = −

&
V−

(q0
− + q̃−)9 ·(v0

− − q̃− ṽ−)=q0
−0,V−

2 + (q̃−)2 (14)

In the sub-domain V+, the same decomposition as (10) gives
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q+ =q0
+ + q̃+ (15)

with q0
+ �L0

2(V+)SPN(V+) and q̃+ is constant in V+. Let v0
+ =9q0

+, then

(9q0
+, v0

+)GL
+ ]9q0

+0,V+
2 = �q0

+ �1,V+v0
+0,V+ (16)

Let z�L0
2(V+)dSPN(V+)d such that

(z, 9q)GL
+ = (q,ṽ− ·n−)GL

G ÖqL0
2(V+)SPN(V+) (17)

Taking v+ =v0
+ + q̃−z and noting that q̃− �V− �+ q̃+ �V+ �=0, then

(9q+, v+)GL
+ + (q+, v− ·n−)GL

G

= (9q+, v0
+)GL

+ + (9q+, q̃−z)GL
+ + (q0

+, v− ·n−)GL
G + (q̃+, v− ·n−)GL

G

] �q+ �1,V+
2 + (q0

+, v0
− ·n−)GL

G + q̃+(1, v− ·n−)GL
G = �q+ �1,V+

2 − q̃−q̃+

= �q+ �1,V
2 + �V+ �/�V− �(q̃+)2 (18)

where �Vk� is the measure of Vk. To estimate v− and v+, we use Equations (11), (12), (17) and
the definition of ṽ−,

v−1,V− =v0
− − q̃− ṽ−1,V−5

1
bN

− q0
−0,V− +cq̃−5

c1

bN
− q−0,V− (19)

v+0,V+5v0
+0,V+ + q̃−ṽ−1,V−5 �q0

+ �1,V+ +c2q̃+5c3q+1,V+ (20)

where c, c1, c2 and c3 depend on v%, V− and V+. Taking v= (v−, v+), we then have v�X ;
furthermore using Equations (14), (18)–(20), we get

bN(v, q)
vX

=
− (q−, 9 ·v−)G

− + (9q+, v+)GL
+ + (q+, v− ·n−)GL

G

v−1,V− +v+0,V+

]
q0

−0,V−
2 + (q̃−)2+ �q+ �1,V+

2 + �V+ �/�V− �(q̃+)2

(c1/bN
−)q−0,V− +c3q+1,V+

]bNqM

with bN=cbN
−/(1+bN

−), where c is a constant depending on the domain. 

Remark 3.1
It has been theoretically proven that the local Inf–Sup constant bN

− satisfies bN
−#cN−1/2,

while numerical evidences show [21] a comportment as O(N−1/4). Lemma 3.1 implicates that
bN#bN

−, i.e. the global Inf–Sup constant has a comportment similar to the local Inf–Sup
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constant. This fact will guarantee the effectiveness of the numerical algorithm described
below.

4. THE UZAWA ALGORITHM

Hereafter, we use letters of boldface lower type to denote vectors or vector functions and use
letters of boldface upper type to denote matrices. Expressing uN, vN, pN and qN in Lagrangian
interpolants, and choosing each test function vN, qN to be non-zero at only one global
collocation point, we obtain from the problem (8) the following algebraic equations given in
matrix form:

�H− 0
0 H+

��u−

u+

�
−
�D− 0

IG − (D+)T

�T�p−

p+

�
=
�B−f−

B+f+

�
(21)

−
�D− 0

IG − (D+)T

��u−

u+

�
=
�0

0
�

(22)

It is assumed that the homogeneous boundary conditions on the viscous domain are imposed
by eliminating appropriate row and columns. In (21) and (22), the unknowns uk, pk (k=
−, + ) are the values at the global collocation points of the velocity and the pressure; D− and
(D+)T are the discrete divergence operators stemming from (9 ·uN

−, qN
−)G

− and (uN
+, 9qN

+)GL
+

respectively; the superscript T denotes the transposition of matrix; B− and B+ are the
associated mass matrices; IG denotes the identity operator applied in the normal n− on the
interface G (under implication of multiplication by the weights corresponding on G); Hk (k=
− , + ) is defined by

Hk=aBk+ndk−A−

where

dk− =
!1 k= −

0 k= +

and A− is the discrete Laplace operator.
To simplify the notations, let us denote

Hc=
�H− 0

0 H+

�
, Dc=

�D− 0
IG − (D+)T

�
, Bc=

�B− 0
0 B+

�
,

uc=
�u−

u+

�
, . . .
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We can rewrite (21) and (22) into

!Hcuc−Dc
Tpc=Bcfc

−Dcuc=0
(23)

We then break the saddle problem (23) into two positive definite symmetric forms, one for the
global pressure and one for the global velocity,

Scpc= −DcHc
−1Bcfc (24)

Hcuc=Dc
Tpc+Bcfc (25)

where

Sc=DcHc
−1Dc

T (26)

The advantage of the Uzawa procedure is that the pressure and velocity are completely
decoupled in the resolution. The apparent disadvantage is the system in the discrete pressure,
as the matrix Sc, has rank equal to the number of global pressure degrees of freedom, and is
coupled at the interface due to the presence of IG, and thus necessitates an iterative solver.
Note that Sc and Hc are positive definite symmetric matrices, standard elliptic solvers like
conjugate gradient algorithm can readily be applied to solve the discrete pressure equation (24)
and the discrete velocity equation (25). An important point to note is that the matrix Hc in Sc

is diagonal by block at the interface level, which means that the inverse of Hc can be done
separately between the viscous part and the inviscid part. We see that inverse of H+ is
immediate, while H− represents the standard Helmholtz operator and can be inverted by well
pre-conditioned conjugate gradient iterations (see e.g. References [22,23]).

In summary, the pressure is calculated by an inner/outer pre-conditioned conjugate gradient
iterative procedure. At each iteration, one inverse of Hc has to be done, which will be effected
by an inner iterative procedure. In order for this inner/outer procedure to be efficient for large
problems, a good pre-conditioner Pc needs to be found to accelerate the convergence of the
outer conjugate gradient algorithm.

To find appropriate pre-conditioners to the matrix Sc, we first review some fast spectral
element solvers of currently used in the resolution of the unsteady Stokes problem: the first
solver uses a two-level Richardson inner/outer iteration scheme [24]; the second solver uses the
approach of Cahouet and Chabard [22], i.e. pre-condition the pressure matrix Sc directly.
Numerical tests show that the second solver is simpler and more efficient (see e.g. Reference
[16] and the references therein). Therefore, we are particularly interested in the second
approach, which we briefly recall as follows. Suppose we deal with the semi-discretized
unsteady Stokes problem in the whole domain V,

au−nDu+9p= f, 9 ·u=0 in V (27)
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subject to the homogeneous Dirichlet velocity boundary conditions on the whole domain
boundary (V. Consider its spectral approximation based on suitable variational form:
Find uN×pN�X %N×M %N, such that

!a(uN, vN)GL+n(9uN, 9vN)GL− (pN, 9 ·vN)G= (f, vN)GL ÖvN�X %N
(qN, 9 ·uN)G=0 ÖqN�M %N

(28)

where we choose the discrete velocity space X %N and the discrete pressure space M %N as follows:

X %N={v�H0
1(V)d; v�Vk�PN(Vk)d, k= − , +}

M %N={q�L0
2(V); q �Vk�PN−2(Vk), k= − , +}

As for the viscous/inviscid coupled problem (8), we arrive from (28) by expressing the discrete
velocity and pressure in terms of Lagrangian interpolant bases through the Gauss–Lobatto
and Gauss points respectively at the following matrix statements:

H6u6−D6Tp6=B6f6 (29)

−D6u6=0 (30)

with

H6=aB6+nA6

where A6 is the discrete Laplace opertor, D6T is the discrete gradient operator, B6 is the mass
matrix corresponding to the global viscous problem.

Using the classical Uzawa algorithm, we obtain from the saddle problem (29) and (30) two
positive definite symmetric similar to (24) and (25),

S6p6= −D6H6−1B6f6 (31)

H6u6=D6Tp6+B6f6 (32)

where

S6=D6H6−1D6T (33)

We solve the two systems (31) and (32) using the approach of Cahouet and Chabard, i.e. we
solve Equations (31) and (32) by applying the nested inner/outer conjugate gradient algorithm
with the pre-conditioner for the pressure matrix S6 [16],
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P6=aE6−1+nB6−1 (34)

where

E6=D6B6−1D6T (35)

The particular choice (34) as a pre-conditioner for S6 can be motivated by considering two
extreme situations of very small and very large values of a, i.e. the inverse of the time step. In
both of these cases, P6−1S6 is close to the identity matrix. The matrix E6 is in fact the discrete
consistent Poisson operator of explicit schemes. Numerical simulations, performed by Maday
et al. [16], have shown that inverting E6 requires more iterations than inverting a standard
Laplace operator. There are, however, some recently developed approaches (see Fischer [25])
that make the E6 operator behave much like a standard Laplacian. To our aims, E6 is inverted
using standard conjugate gradient iteration, although an overlapping Schwarz pre-condition is
to be prepared.

The choice of P6 as a pre-conditioner for S6 leads to looking for a similar pre-conditioner for
the viscous/inviscid coupled pressure matrix Sc. If the interface operator IG is absent from
the systems (24) and (25), then the viscous part and the inviscid part would be com-
pletely separated. In this case we could pre-condition the two parts individually:
a(D−(B−)−1(D−)T)−1+n(B−)−1 for the viscous part, and a(D+(B+)−1(D+)T)−1 for the
inviscid part. Now that the viscous and inviscid part are coupled through the interface
operator IG, it is natural to choose the pre-conditioner for Sc as

Pc=aEc
−1+n(B−)−1 (36)

where

Ec=DcBc
−1Dc

T (37)

Although the solution of Ec appears to involve nested solves, this is not the case, as Bc is
diagonal. In fact, according to the definition of Dc, Ec is equivalent to the discrete pseudo-
Laplace operator defined on a Gauss mesh in V− and a Gauss–Lobatto mesh in V+. Hence,
similar to E6, Ec can also be inverted using conjugate gradient iteration. Some remarks on the
inversion of Ec and total computational complexity analysis will be given in Section 7.

5. NUMERICAL RESULTS

We demonstrate the pre-conditioned conjugate gradient algorithm on the simple problem (1)
with the rectangular domain V− = (−2, 0)× (−1, 1), V+ = (0, 2)× (−1, 1) and f1=
a(1−x2

2)+cos(x1) sin(x2), f2=sin(x1) cos(x2). With these data, the problem (1)–(2) possesses
an analytical solution
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Á
Ã
Í
Ã
Ä

u1(x1, x2, t)=1−x2
2

u2(x1, x2, t)=0
p−(x1, x2, t)=sin(x1) sin(x2)−2nx1

p+(x1, x2, t)=sin(x1) sin(x2)

The numerical tests are first used to prove the effectiveness of the pre-conditioner Pc. Figure
2 plots the residual as a function of the iteration number for a=100, n=0.001, N=14 for the
unpre-conditioned conjugate gradient (CG) and pre-conditioned conjugate gradient (PCG)
procedures to the discrete viscous/inviscid coupled pressure system. Considerable acceleration
results from the pre-conditioner Pc. We compare the results with the those obtained by the
pre-conditioner P6 to the pure viscous pressure system. Figure 3 presents the convergence
history for the conjugate gradient procedures to the pure viscous pressure system for the same
values of a, n and N. The results obtained are very similar to the ones presented by Maday et
al. [16]. Both Pc for Sc and P6 for S6 lead to significant convergence rates, though the
convergence of the unpre-conditioned conjugate gradient procedure for the viscous/inviscid
coupled problem is slower than the pure viscous problem. Note, however, the number of
degrees of freedom used in the former is 2× (N+1)2 as compared with (N+1)2(N−1)2 in the
latter, because a higher polynomial is used in the unviscid sub-domain when solving the
viscous/inviscid coupling.

The next test is related to the investigation of dependence on the polynomial degrees of the
Pc-PCG algorithm. We plot in Figure 4 the convergence history as a function of the iteration
number for the outer Pc-PCG procedure for various choices of the polynomial degrees N. The
similarity of the convergence rate between various values of N is indicative of the resolution-
independent convergence of the Pc-PCG algorithm.

Figure 2. A plot of the residual as a function of the iteration number for the outer CG (2) and Pc-PCG
(�) procedures applied to spectral discretization pressure system of the viscous/inviscid coupled problem

with a=100, n=0.01, N=14.
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Figure 3. The convergence history for the outer CG (2) and P6-PCG (�) procedures applied to spectral
discretization pressure system of the pure viscous problem with a=100, n=0.01, N=14.

To demonstrate the effect of a on the properties of PcSc, we monitor the residual in the
coupled pressure iteration for three different values of a. We plot in Figure 5 the convergence
history for the outer Pc-PCG procedure for various choices of values of a. As mentioned
above, using Pc as the pre-conditioner for Sc is motivated by considering two extreme
situations of very small and very large values of a. Hence, for the smaller and larger values of
a, a=1 and a=1000, the discrete pressure operator Sc is perfectly pre-conditioned by Pc, as
shown in Figure 5. For the intermediate values of a, a=100, as expected in the pure viscous
case, we see that the pre-conditioner Pc also does a good job, similar to the cases of a=1 and

Figure 4. A plot of the residual as a function of the iteration number for the outer Pc-PCG procedures
applied to the viscous/inviscid coupled problem for three different values of polynomial degree, N=6

(2), N=10 (�) and N=14 (�), with a=100, n=0.01.
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Figure 5. The convergence history as a function of the iteration number for the outer Pc-pre-conditioned
conjugate procedures applied to the viscous/inviscid coupled problem for a=1 (2), a=100 (�) and

a=10000 (�), with N=10 and n=0.01.

a=1000. In conclusion, Pc is a good pre-conditioner for the discrete coupled pressure operator
Sc for all values of a.

6. GENERALIZATION TO THE UNSTEADY NAVIER–STOKES/EULER COUPLED
PROBLEM AND TO COMPLEX GEOMETRIES

As an essential building block, the viscous/inviscid coupled model presented above can be
applied to the resolution of the unsteady Navier–Stokes/Euler coupled equations

Á
Ã
Í
Ã
Ä

(u−

(t
+ (u− ·9)u− −nDu− +9p− = f−, 9 ·u− =0 in V− × (0, T)

(u+

(t
+ (u+ ·9)u+ +9p+ = f+, 9 ·u+ =0 in V+ × (0, T)

(38)

where (0, T) is the time interval (T\0). In simulations of incompressible viscous fluid flow at
moderate Reynolds numbers, the non-linear convective term is often treated explicitly, while
the linear terms are treated implicitly (known as classic semi-implicit method). Numerous
methods have been used in expressing of the convective operator when solving the pure
Navier–Stokes equations by spectral element methods. Among them, the skew symmetric form
and the rotational form have been preferred choices for transition and turbulence simulations,
due to their good conservation properties. In particular, the rotational form conserves kinetic
energy for inviscid flow, and requires evaluation of fewer derivatives. That was the motivation
for using the rotational/semi-implicit method in our previous works [6,8] on the approximation
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of the viscous/inviscid coupled problem. Some works by Horiuti [26], Zang [27] and Ronquist
[28], however, indicate that the rotational form is less accurate than other forms. This point
will be partially investigated in our numerical simulations. Moreover, the semi-implicit
treatment of the convective terms has a principal restriction on the time step, in particular for
convection-dominated flow. Recently, the operator–integration–factor splitting method has
been becoming popular thanks to its better stability property as compared with the classic
semi-implicit methods. This method, developed by Maday et al. [29], consists in decoupling the
convective terms from the viscous and gradient operators in order to permit a much larger time
step.

We adapt, in this section, the operator–integration–factor method to our viscous/inviscid
coupled equations. Precisely, we first write Equation (38) into the following form:

Á
Ã
Í
Ã
Ä

Du−

Dt
−nDu− +9p− = f−, 9 ·u− =0 in V− × (0, T)

Du+

Dt
+9p+ = f+, 9 ·u+ =0 in V+ × (0, T)

(39)

where D/Dt is the total derivative in the direction u. We discretize (39) in time by an implicit
scheme and so arrive at the following viscous/inviscid model:

!au−n+1−nDu−n+1+9p−n+1= f−n+1+au−n(xn( ·)), 9 ·u−n+1=0 in V−

au+n+1+9p+n+1= f+n+1+au+n(xn( ·)), 9 ·u−n+1=0 in V+ (40)

where a=1/Dt, and xn(x)=x(x, (n+1)Dt ; nDt) is the solution of

dx

dt
=un(x), x(x, t ; t)=x (41)

Each time step requires a viscous/inviscid coupled resolution plus a transport of the previous
solutions on the characteristics. Note that un(xn( ·)) is nothing other than ũ( · , tn+1), the
solution at t= tn+1 of the following problem:

Á
Ã
Í
Ã
Ä

( ũ(x, t)
(t

= −u(x, t) ·9ũ(x, t), tnBtB tn+1

ũ(x, tn)=u(x, tn)

We use a fourth-order Runge–Kutta scheme to determine the characteristic solution. The
simple convective form is used to treat the above advection term.

We solve the coupled problem (38) by a spectral element method within a complicated
geometry. As a test problem we take a laminar flow over a backward-facing step that is broken
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into a viscous region and an inviscid region and involves a large number of degrees of freedom.
To show the efficiency of the pre-conditioned Uzawa algorithm described above in the case of
complex problem, we will investigate the behaviour of the Pc-pre-conditioned conjugate
gradient procedure for the coupled pressure system. Moreover, the comparisons on accuracy
between the rotational/semi-implicit method and the operator–integration–factor characteristic
method are also performed.

We consider the cases of Reynolds number Re= ũ(H−h)/n=73 and 191, where ũ is the
average velocity at the entrance, H and h are respectively the height of the outlet and the
entrance. H−h is the height of the step. The expansion ratio of the step is h :H=2:3. The
profile of the inflow boundary condition is taken as parabolic (Poiseuille flow). The outlet
boundary is taken far away from the step (22 step heights) to impose an undisturbed Dirichlet
condition at the outflow. The partition of the viscous and inviscid sub-domains and the
Gauss–Lobatto spectral element mesh used in the calculation is shown in Figure 6. The domain
is broken into 37 macro-elements. Nineteen elements are for the viscous equations, 18 elements
are for the inviscid equations. Fine resolution is placed near the step in order to resolve the thin
boundary layers and eddy structures expected in the vicinity of the step. If using a polynomial
degree N=8, the total number of degrees of freedom on the pressure system is 2389.

We first monitor the residual in the outer pressure iteration as a function of the iteration
number during the first time step at Re=191. In Figure 7 we plot the convergence history when
using a polynomial degree N=8 and using Pc as a pre-conditioner for three different time steps
Dt=0.1, Dt=0.01 and Dt=0.001. Here again we see that the pre-conditioner Pc does a good
job for all time steps even for complex problems. In Figure 8 we plot the convergence history
when using a time step Dt=0.001 for three different polynomial degrees N=6, N=8 and
N=10. Note the convergence rate decreases slightly as the polynomial degree N increases.

Now we make a comparison between the rotational/semi-implicit method and the character-
istic method for each of the two Reynolds numbers. Figure 9(a) and (b) shows the pressure
contour lines with the rotational/semi-implicit method (top) and the characteristic method
(bottom) for Re=73 and 191 respectively. In both cases, the characteristic method gives better
results: the characteristic scheme yields smoother pressure fields than the rotational/semi-
implicit scheme. At Reynolds number Re=73, the difference between the two methods is not
so large, the flow structure is accurately resolved by both methods. At Reynolds number
Re=191, however, the difference is more significant because the rotational form produces
errors that are more damaging than those stemming from the characteristic method. Our
numerical experiment, furthermore, supports the conclusion reported by, among others, Horiuti
[30], Zang [27] and Ronquist [28].

Figure 6. Partition of domain and spectral element mesh used for a laminar flow over a backward-facing
step. The domain is broken into 37 macro-elements, of which 19 in the viscous part and 18 in the inviscid

part.
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Figure 7. A plot of the residual as a function of the number of outer conjugate gradient iterations when
solving for the first time step of a simulated laminar flow over a backward-facing step. The plot shows
the convergence history when using polynomial degree N=8 for three different time steps Dt=0.1 (�),

Dt=0.01 (�) and Dt=0.001 (2).

Figure 8. A plot of the residual as a function of the number of outer conjugate gradient iterations when
solving for the first time step of a simulated laminar flow over a backward-facing step. The plot shows
the convergence history when using time step Dt=0.01 for three different polynomial degrees N=6 (2),
N=8 (�), and N=10 (�). The convergence rate decreases slightly as the polynomial degree increases.

We compare also the result obtained by our coupled model with the ones obtained by the
pure Navier–Stokes equations. We claim that choosing the backward-facing step laminar flow
as our test problem, and partitioning the computational domain (as shown in Figure 6) is not
indicative that we suppose the flow far downstream can be modelled by the inviscid Euler
equation; rather, we hope that the calculation using the current decomposition may be used to
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Figure 9. Pressure contour lines for laminar flow past a backward-facing step obtained by the
rotational/semi-implicit method in both cases of Reynolds number.

analyse the viscous effect region and help us to determine where and when the viscous model
can be reduced into the inviscid model. In fact, for laminar flow, at any Reynolds number, the
flow may be entirely determined by the viscous–pressure balance. This fact will be confirmed
by our following numerical results. Figures 10 and 11 show the velocity vectors distribution
and streamline contours computed using the coupled model (top) and pure Navier–Stokes
model (bottom) for two Reynolds numbers mentioned above respectively. Also shown are
enlarged views of the streamline pattern near the step. Good agreement between the two
models can be observed for both cases of Re=73 and 191. This means that the viscous effect
on the velocity field far downstream is small. Moreover, the agreement on eddy structures in
the vicinity of the step observed via the enlarged view proves that the Navier–Stokes zone are
well resolved using both our coupled model and the pure Navier–Stokes model.

To compare in detail the simulated flows computed by two models, we plot in Figure 12 the
u1 velocity profiles at various sections behind the step for Re=73 and 191. The pressure
profiles have also been plotted in Figure 13 for comparison. The u1 velocity profiles resulting
from the two models (solid lines for the coupled model, dotted lines for the pure viscous
model) at each section coincide perfectly for both Reynolds number. For the pressure profiles,
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Figure 10. Instantaneous velocity vector distribution obtained by the present coupled model (top of (a)
and (b)) and pure viscous model (bottom of (a) and (b)). The results compare well for both Reynolds

numbers Re=73 and Re=191.

there is also good agreement in the region between the step and the interface separating the
viscous sub-domain and inviscid sub-domain (see Figure 6 for exact location of the interface).
The significant differences observed on the pressure profiles are in the region behind the
interface, where the pressure prediction of the coupled model is greater than that of the pure
viscous model. The difference observed for Reynolds number Re=73 is more significant than
the one for Reynolds number Re=191. The smaller the Reynolds number is, the greater the
viscous term is. In this case, the viscous effect is no longer negligible as compared with the
values of the pressure behind the interface (note that the pressure near the outlet is small, of
order O(10−3) in our examples). Careful examinations show that the full viscous pressure
prediction is a linear decrease, whereas the viscous/inviscid coupled pressure prediction is a
constant in the inviscid sub-domain. This may be due to the fact that, in a laminar flow,
existence of the boundary layer makes the viscous diffusion no longer negligible even if the
viscosity is small. Even so, we believe that if we are only interested in the fluid movement in
the vicinity of the step (this is often the case in practice), the current location of the interface
has been able to give sufficiently good results near the step, at least comparable with the those
obtained from the full Navier–Stokes equations within the whole domain.
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Figure 11. Streamline contours obtained by the present coupled model (top of (a) and (b)) and pure
viscous model (bottom of (a) and (b)). Eddy structures in the vicinity of the step are enlarged for better

comparisons. The results are comparable between the two.
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Figure 12. Horizontal velocity profiles plotted at various sections behind the step computed respectively
by the present coupled model (solid lines) and pure viscous model (dotted lines).

The profiles at the horizontal sections (bottom parts in Figures 12 and 13) are used to show
the behaviours of the flow neat the interface. It can be noticed from the two bottom figures
that the flow traverses continuously the interface. This is indicative that the interface
conditions are well resolved by the mesh we used.

We now make some remarks regarding the partition of the viscous and inviscid sub-
domains. For our purposes, the partition is made artificially for a reason that the main
purposes of our numerical experiments are to show the effectiveness and potential of the
proposed method. In real applications, the exact location of the interface would be non-trivial.
There are still a number of open mathematical questions related to the behaviour of the
solutions when the Reynolds number increases. The convergence of the solution of the
Navier–Stokes equations to the solution of the Euler equations when the Reynolds number
tends to infinity has been proved only in very special cases (the external flow is one of these
cases, in which the Euler equations are really appropriate in a region far from the obstacle).
The main difficulty is to understand how the boundary conditions behave in the limiting
process. According to the viewpoint of Brezzi et al. [30], neglecting the diffusion effects in the
Navier–Stokes equations is justified only in the region where the divergence of the stress
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Figure 13. A plot of the pressure profiles at various sections behind the step computed respectively by
the present coupled model (solid lines) and pure viscous model (dotted lines).

tensor is negligible, i.e. if, for a constant Reynolds number, (1/Re)Du is negligible. This means
that even for moderate Reynolds number, it is also possible to reduce the Navier–Stokes
equations to the Euler equations in the region if (1/Re)Du is smaller than an optimistic
estimate of the discretization error. In this sense, it is expected that the present viscous/inviscid
coupled model can be used as a tool to the viscous/inviscid analysis.

7. COMPUTATIONAL COMPLEXITY COMPARISON

Now we are in a position to compare the computational complexity of solving the viscous/
inviscid coupled system (24)–(25) and the global viscous system (31)–(32). We first summarize
the main computational procedure. We are in fact solving the following systems:

Sp= −DH−1Bf (42)
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Hu=DTp=Bf (43)

which can be the system (24)–(25) or the system (31)–(32). The outer pre-conditioned
conjugate gradient iteration for the pressure system (42) takes the following form (see e.g. [18]):

p0, r0=Sp0−DH−1Bf, g0=Pr0, d0=g0

am= −
gm

Trm

dm
TSdm

pm+1=pm+amdm, rm+1=rm+amSdm

g
m+1

=Prm+1, bm=
gm+1

T rm+1

gm
Trm

dm+1=rm+1+bmdm

where P is the pre-conditioner, m is the iteration counter, rm is the residual, gm is a vector
associated with the pre-conditioning, dm is the search direction, and am and bm are scalars. The
inner pre-conditioned conjugate gradient iteration is related to the evaluation of the matrix–
vector product Sd in the outer conjugate gradient iteration. This evaluation is achieved as
follows:

y=DTd
Hz=y

Sd=Dz

Each matrix–vector product evaluation requires d standard Helmholtz solvers in the d-
dimensional case. The evaluation of the preconditioning Pr needs one inversion of the matrix
E and one inversion of the mass matrix B. Note that the mass matrix B is diagonal, the cost
of the pre-conditioning in each iteration of the outer iteration lies on the inversion of E.
Therefore, each iteration in the outer conjugate gradient iteration requires one pseudo-
Laplacian solver for Ec in whole domain V and d standard Helmholtz solvers in the viscous
sub-domain V− for the viscous/inviscid coupled case, as compared with one pseudo-Laplacian
solver for E6 and d standard Helmholtz solvers all in whole domain V for the pure viscous
case.

If the condition numbers of the matrix PcSc and PvSv are respectively of order say O(rc) and
O(r6), then the number of outer conjugate gradient iterations scales like O
rc for PcSc and
O(
r6) for P6S6. We see hence that computing the pressure requires only order 
r6,
pseudo-Laplacian solver in the whole domain V and 
rcd standard Helmholtz solvers in the
viscous sub-domain V− for the viscous/inviscid coupled case, as compared with order 
r6d
pseudo-Laplacian solver and 
r6d standard Helmholtz solvers, all in the whole domain V for
the pure viscous case. Once the pressure is known, another d standard Helmholtz solvers in the
6iscous sub-domain V− is needed to compute the velocity for the viscous/inviscid coupled case,
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as compared with d standard Helmholtz solvers in the whole domain V− needed for the pure
viscous case.

It is well known that [24,31], by using a tensor product factorization technique, one
Laplacian operator in d space dimensions can be evaluated by O(Nd+1) operations for each
macro-element. If the inner pre-conditioned conjugate gradient algorithm is employed to solve
the discretized Helmholtz equations, and suppose that the number of iterations required to
achieve convergence scales is tH, then the approximate operation count for a solution of a
standard Helmholtz problem in Rd is O(tHNd+1) in each macro-element. The final approxi-
mate operation count for a solution of Equations (24) and (25) by outer–inner pre-conditioned
conjugate gradient algorithm is thus of the order


tctEKNd+1+
rcdtHK−Nd+1

that is


rcNd+1(tEK+dtHK−)

for the viscous/inviscid coupled case, as compared with order


r6tEKNd+1+
t6dtHKNd+1=
t6KNd+1(tE+dtH)

for the pure viscous case, where it is supposed that the inversions of Ec and E6 require the same
number of iterations, say tE. K and K− are respectively the total macro-element number and
macro-element number in the viscous region. The cost rate t between the coupled model and
the pure viscous model is then

t=

tcNd+1(tEK+dtHK−)


r6KNd+1(tE+dtH)
=
'tc

r6

� tE

tE+dtH

+
K−

K
dtH

tE+dtH

�
In real applications, K− could be small as compared with K, so the cost rate scales like

tc/t6tE/(tE+dtH). It is expected, and confirmed by our numerical test (see Figures 2 and 3),
that tc and t6 have the same order. As a result, the cost rate behaves like tE/(tE+dtH).

Finally, we make some remarks regarding the inversion of the pseudo-Laplacian matrix E.
From the definitions of Ec and E6 in Equations (37) and (35) respectively, we see that the
matrices Ec and E6 are practically of same structure. They are essentially a second-order
operator with Neumann-like pressure boundary conditions. In our calculation, standard
conjugate gradient iteration has been used to invert both Ec and E6. The experience from
numerical simulations has been that inverting Ec and E6 needs more iterations than inverting
the standard Laplace operator or Helmholtz operator (but the difference between Ec and E6
has been very slight), i.e. tE\tH. There are, however, some recent overlapping Schwarz
pre-conditioners for the E system, developed by Fischer [25], which make the inversion of the
E matrix behave much more like a standard Laplace matrix. We plan to employ his approach
in our future implementation in order to make our method more competitive.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 619–646



ANALYSIS OF VISCOUS/INVISCID COUPLED PROBLEM 645

8. DISCUSSIONS AND CONCLUSIONS

In conclusion, an efficient pre-conditioned Uzawa algorithm has been analysed and applied to
spectral element approximation of the Navier–Stokes/Euler coupled equations. The numerical
examples demonstrate the applications of the present algorithm to the simulations of incom-
pressible flow problems. It is shown, from our numerical simulations, that the present
algorithm has been able to reduce the computational cost. The computational complexity
analysis shows that, using the global pseudo-Laplace operator as a pre-conditioner, the cost
rate between the coupled model and the pure viscous model depends on the efficient inversion
of the pseudo-Laplacian. More the inversion of the pseudo-Laplacian behaves like the
inversion of a standard Laplacian or a standard Helmholtz operator, further reduction on the
computational cost is gained using the present viscous/inviscid coupled model. Further work
will be related to find a more effective approach to invert the pseudo-Laplacian operator.
We note also that if we want to reduce the computational cost further, we would have to
use another pre-conditioner other than the global pseudo-Laplace operator. Better pre-
conditioners will be the ones that use only the local information in the viscous region. We are
also planning to address these problems in a future paper.
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